
Series 10-Solutions 

Exercise 1 

The original system has two poles, one at −1/𝜏1 and the other at 1/𝜏2. As such, the system is 

unstable. We would like to see how we can stabilize the system using different types of 

controllers.  

The addition of a proportional gain controller (𝐺𝑅 = 𝐾𝑅) results in the following transfer function: 

𝑌(𝑠)

𝑌𝑐(𝑠)
=

𝐺𝑅𝐺(𝑠)

1 + 𝐺𝑅𝐺(𝑠)
 

=

𝐾𝑅𝐾
(𝜏1𝑠 + 1)(𝜏2𝑠 − 1)

1 +  
𝐾𝑅𝐾

(𝜏1𝑠 + 1)(𝜏2𝑠 − 1)

 

The resulting characteristic equation is : 

𝑓(𝑠) = (𝜏1𝑠 + 1)(𝜏2𝑠 − 1) + 𝐾𝑅𝐾 = 0 

⇒ 𝜏1𝜏2𝑠2 + (𝜏2 − 𝜏1)𝑠 + (𝐾𝑅𝐾 − 1) = 0 

According to the Routh-Hurwitz criterion, we need all the three terms of the polynomial to be 

positive. This results in the following conditions: 

𝜏2 − 𝜏1 > 0 

𝐾𝑅𝐾 > 1 

Thus we can see that the use of a proportional gain controller cannot guarantee the stability of 

the system as one of the two conditions is entirely dependent on the system properties 

themselves. 

So what happens if we use a PD controller (𝐺𝑅 = 𝐾𝑅(1 + 𝜏𝐷𝑠))? The characteristic equation 

becomes:   

𝑓(𝑠) = (𝜏1𝑠 + 1)(𝜏2𝑠 − 1) + 𝐾𝑅(1 + 𝜏𝐷𝑠)𝐾 = 0 

⇒ 𝜏1𝜏2𝑠2 + (𝜏2 − 𝜏1 + 𝐾𝑅𝐾𝜏𝐷)𝑠 + (𝐾𝑅𝐾 − 1) = 0 

The two Routh-Hurwitz conditions now become: 

𝜏2 − 𝜏1 + 𝐾𝑅𝐾𝜏𝐷 > 0 

𝐾𝑅𝐾 − 1 > 0 

Hence, we can now tweak, both 𝐾𝑅 and 𝜏𝐷 to coax the system towards stability.  

 

 

 

 



Exercise 2 

The process is described by the following equation: 

𝜏
𝑑𝑦(𝑡)

𝑑𝑡
+ 𝑦(𝑡) = 𝐾𝑢(𝑡)   

In the Laplace domain, this becomes: 

𝜏𝑠𝑌(𝑠) − 𝜏𝑦(0) + 𝑌(𝑠) = 𝐾𝑈(𝑠) 

Note that 𝑦(0) = 0, so the transfer function is given by: 

𝐺(𝑠) =  
𝑌(𝑠)

𝑈(𝑠)
=

𝐾

𝜏𝑠 + 1
 

This describes a stable first order system with its pole on the left hand side of the complex 

plane. Once we add a PI controller to the system (𝐺𝑅 = 𝐾𝑅(1 +
1

𝜏𝐼𝑠
)), The resulting closed loop 

system becomes: 

𝑌(𝑠)

𝑌𝐶(𝑠)
=

𝐺𝑅𝐺(𝑠)

1 + 𝐺𝑅𝐺(𝑠)
 

(a) The stability of the system is determined by the roots of its characteristic equation given by: 

𝑓(𝑠) = 1 + 𝐺𝑅𝐺(𝑠) = 0 

⇒ 1 +
𝐾𝑅(𝜏𝐼𝑠 + 1)

𝜏𝐼𝑠
⋅

𝐾

𝜏𝑠 + 1
= 0 

⇒ 𝜏𝐼𝑠(τs + 1) + 𝐾𝑅𝐾(τI𝑠 + 1) = 0 

⇒ 𝜏𝐼𝜏𝑠2 + 𝜏𝐼𝑠 + 𝐾𝑅𝐾𝜏𝐼𝑠 + 𝐾𝑅𝐾 = 0 

⇒ 𝜏𝐼𝜏𝑠2 + 𝜏𝐼(1 + 𝐾𝑅𝐾)𝑠 + 𝐾𝑅𝐾 = 0 

Once again, we can apply the Routh-Hurwitz criteria here. All the three coefficients should be 

strictly positive. In this case, this leaves us with the following: 

𝜏𝐼𝜏 > 0 

𝜏𝐼(1 + 𝐾𝑅𝐾) > 0 

𝐾𝑅𝐾 > 0 

Since 𝜏𝐼 and 𝜏 are time constants, they are already positive. This leaves us with only one 

criterion for stability: 𝐾𝑅𝐾 > 0. This essentially means that the controller’s mode of action should 

be dictated by the gain of the system, with 𝐾𝑅 < 0 if 𝐾 < 0 and vice-versa. 

 

(b) The application of a pure time delay to the system is represented in the Laplace domain by 

multiplying the original 𝐺(𝑠) by 𝑒−𝜃𝑠. 

The characteristic equation then becomes  



𝑓(𝑠) =  1 +
𝐾𝑅(𝜏𝐼𝑠 + 1)

𝜏𝐼𝑠
⋅

𝐾𝑒−𝜃𝑠

𝜏𝑠 + 1
= 0 

We can approximate the exponential function using a Taylor expansion: 

𝑒−𝜃𝑠 = 1 − 𝜃𝑠 + 𝜃2𝑠2 + ⋯  

⇒ 𝑒−𝜃𝑠 ≅ 1 − 𝜃𝑠 

Applying this to the characteristic equation, we get: 

𝑓(𝑠) =  1 +
𝐾𝑅(𝜏𝐼𝑠 + 1)

𝜏𝐼𝑠
⋅

𝐾(1 − 𝜃𝑠)

𝜏𝑠 + 1
= 0 

⇒ 𝜏𝐼𝑠(τs + 1) + 𝐾𝑅𝐾(τI𝑠 + 1)(1 − 𝜃𝑠) = 0 

⇒ 𝜏𝐼(𝜏 − 𝜃𝐾𝐾𝑅)𝑠2 + (𝜏𝐼 + 𝐾𝑅𝐾(𝜏𝐼 − 𝜃))𝑠 + 𝐾𝑅𝐾 = 0 

The Routh-Hurwitz conditions for stability are: 

𝜏𝐼(𝜏 − 𝜃𝐾𝐾𝑅) > 0 ⇒ 𝐾𝑅𝐾 <
𝜏

𝜃
 

𝜏𝐼 + 𝐾𝑅𝐾(𝜏𝐼 − 𝜃) > 0 ⇒ 𝜏𝐼 >
𝐾𝑅𝐾𝜃

1 + 𝐾𝑅𝐾
 

𝐾𝑅𝐾 > 0 

The first and third conditions together constrain the operating ranges of the gain of the 

controller. It must have the correct sign depending on the gain of the unregulated system. In 

addition, it must also take into account the degree of time delay of the original system, with 

larger time delays necessitating a smaller degree of control (𝐾𝑅) . 

The second condition relates the dynamic response of the integrator part of the controller to the 

time delay (𝜃) of the original system, with larger time delays corresponding to a slower, and 

weaker, effect of the controller. 

 

 

 

 

 

 

 

 

 

 



Exercise 3 

The reaction inside the tank is of the form 𝑣𝑅 = 𝑘𝑐𝐵; since 𝐴 is in abundance, the reaction rate is 

only determined by the concentration of 𝐵. The mass balances of 𝐵 and 𝐶 are given below: 

𝑑𝑛𝐵

𝑑𝑡
= 𝑉 ⋅

𝑑𝑐𝐵

𝑑𝑡
= 𝑞𝑐𝐵0 − 𝑉𝑘𝑐𝐵 

𝑑𝑛𝐶

𝑑𝑡
= 𝑉 ⋅

𝑑𝑐𝐶

𝑑𝑡
= 𝑉𝑘𝑐𝐵 

In the Laplace domain, these equations become: 

𝑠𝐶𝐵(𝑠) − 𝑐𝐵(0) =
𝑄(𝑠)

𝑉
𝑐𝐵0 − 𝑘𝐶𝐵(𝑠) 

𝑠𝐶𝐶(𝑠) − 𝑐𝐶(0) = 𝑘𝐶𝐵(𝑠) 

The question says that A is in excess and B is added slowly. Hence we can assume that 

𝑐𝐵(0) = 0 = 𝑐𝐶(0). 

We then have  

𝑉(𝑠 + 𝑘)𝐶𝐵(𝑠) = 𝑄(𝑠)𝑐𝐵0   ⇒   
𝐶𝐵(𝑠)

𝑄(𝑠)
=

𝑐𝐵0

𝑉(𝑠 + 𝑘)
 

𝑠𝐶𝐶(𝑠) = 𝑘𝐶𝐵(𝑠)  ⇒  
𝐶𝐶(𝑠)

𝐶𝐵(𝑠)
=

𝑘

𝑠
 

 

⇒
𝐶𝐶(𝑠)

𝑄(𝑠)
=

𝐶𝐶(𝑠)

𝐶𝐵(𝑠)
⋅

𝐶𝐵(𝑠)

𝑄(𝑠)
 

=
𝑘 ⋅ 𝑐𝐵0

𝑉(𝑠 + 𝑘)𝑠
 

The above transfer function is an integrator with a pole at 0, and as such is an unstable system. 

In such a system, a bounded input, such as a step increase in the incoming flow, 𝑞, will result in 

an indefinite increase in the concentration of 𝐶. 

If you want to see this clearly, we can decompose the transfer function into: 

𝐺(𝑠) =
𝐾

(𝑠 + 𝑘)𝑠
=

𝐴

𝑠
+

𝐵

𝑠 + 𝑘
 

The output to any input 𝑞(𝑡) is given by the inverse Laplace transform of : 

𝐶𝑐(𝑠) = 𝐺(𝑠) ⋅ 𝑄(𝑠) = 𝐴 ⋅
𝑄(𝑠)

𝑠
+ 𝐵 ⋅

𝑄(𝑠)

𝑠 + 𝑘
 

The first of these two terms is the Laplace transform of an integration function! 

 


